The K-function for nearly regular point processes.
نویسندگان
چکیده
We propose modeling a nearly regular point pattern by a generalized Neyman-Scott process in which the offspring are Gaussian perturbations from a regular mean configuration. The mean configuration of interest is an equilateral grid, but our results can be used for any stationary regular grid. The case of uniformly distributed points is first studied as a benchmark. By considering the square of the interpoint distances, we can evaluate the first two moments of the K-function. These results can be used for parameter estimation, and simulations are used to both verify the theory and to assess the accuracy of the estimators. The methodology is applied to an investigation of regularity in plumes observed from swimming microorganisms.
منابع مشابه
Testing a Point Null Hypothesis against One-Sided for Non Regular and Exponential Families: The Reconcilability Condition to P-values and Posterior Probability
In this paper, the reconcilability between the P-value and the posterior probability in testing a point null hypothesis against the one-sided hypothesis is considered. Two essential families, non regular and exponential family of distributions, are studied. It was shown in a non regular family of distributions; in some cases, it is possible to find a prior distribution function under which P-va...
متن کاملFOCAL POINT AND FOCAL K-PLANE
This paper deals with the basic notions of k-tautimmersions . These notions come from two special cases; that is, tight and taut immersions. Tight and taut based on high and distance functions respectively and their basic notions are normal bundle, endpoint map, focal point, critical normal. We generalize hight and distance functions to cylindrical function and define basic notions of k-taut ...
متن کاملThe Laplacian Polynomial and Kirchhoff Index of the k-th Semi Total Point Graphs
The k-th semi total point graph of a graph G, , is a graph obtained from G by adding k vertices corresponding to each edge and connecting them to the endpoints of edge considered. In this paper, a formula for Laplacian polynomial of in terms of characteristic and Laplacian polynomials of G is computed, where is a connected regular graph.The Kirchhoff index of is also computed.
متن کاملControlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm
Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biometrics
دوره 57 1 شماره
صفحات -
تاریخ انتشار 2001